
django-postgres-copy Documentation
Release 0.0.5

Ben Welsh

Jun 11, 2021

Contents

1 Why and what for? 3

2 Installation 5

3 An example 7
3.1 How to import data . 7
3.2 How to export data . 8

4 Import options 9
4.1 Transforming data . 10
4.2 Inserting static values . 12
4.3 Extending with hooks . 13

5 Export options 15
5.1 Reducing the exported fields . 15
5.2 Increasing the exported fields . 16

6 Open-source resources 19

Index 21

i

ii

django-postgres-copy Documentation, Release 0.0.5

Quickly import and export delimited data with Django support for PostgreSQL’s COPY command

Contents 1

django-postgres-copy Documentation, Release 0.0.5

2 Contents

CHAPTER 1

Why and what for?

The people who made this library are data journalists. We are often downloading, cleaning and analyzing new data.

That means we write a load of loaders. In the past we did this by looping through each row and saving it to the database
using the Django’s ORM create method.

import csv
from myapp.models import MyModel

data = csv.DictReader(open("./data.csv"))
for row in data:

MyModel.objects.create(name=row['NAME'], number=row['NUMBER'])

That works, but if you have a big file Django will rack up a database query for each row. That can take a long time to
finish.

Lucky for us, PostgreSQL has a built-in tool called COPY that hammers data in and out the database with one quick
query.

This package tries to make using COPY as easy as any other database routine supported by Django. It is implemented
by a custom model manager.

Here’s how it imports a CSV to a database table.

from myapp.models import MyModel

MyModel.objects.from_csv(
"./data.csv", # The path to a source file (a Python file object is also

→˓acceptable)
dict(name='NAME', number='NUMBER') # A crosswalk of model fields to CSV headers.

)

And here’s how it exports a database table to a CSV.

3

http://www.californiacivicdata.org/about/
https://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.create
http://www.postgresql.org/docs/9.4/static/sql-copy.html
https://docs.djangoproject.com/en/dev/topics/db/managers/

django-postgres-copy Documentation, Release 0.0.5

from myapp.models import MyModel

MyModel.objects.to_csv("./data.csv")

4 Chapter 1. Why and what for?

CHAPTER 2

Installation

The package can be installed from the Python Package Index with pip.

$ pip install django-postgres-copy

You will of course have to have Django, PostgreSQL and an adapter between the two (like psycopg2) already installed
to put this library to use.

5

http://initd.org/psycopg/docs/

django-postgres-copy Documentation, Release 0.0.5

6 Chapter 2. Installation

CHAPTER 3

An example

It all starts with a CSV file you’d like to load into your database. This library is intended to be used with large files but
here’s something simple as an example.

name,number,date
ben,1,2012-01-01
joe,2,2012-01-02
jane,3,2012-01-03

A Django model that corresponds to the data might look something like this. It should have our custom manager
attached.

from django.db import models
from postgres_copy import CopyManager

class Person(models.Model):
name = models.CharField(max_length=500)
number = models.IntegerField(null=True)
date = models.DateField(null=True)
objects = CopyManager()

If the model hasn’t been created in your database, that needs to happen.

$ python manage.py migrate

3.1 How to import data

Here’s how to create a script to import CSV data into the model. Our favorite way to do this is to write a custom
Django management command.

7

https://docs.djangoproject.com/en/2.2/howto/custom-management-commands/
https://docs.djangoproject.com/en/2.2/howto/custom-management-commands/

django-postgres-copy Documentation, Release 0.0.5

from myapp.models import Person
from django.core.management.base import BaseCommand

class Command(BaseCommand):

def handle(self, *args, **kwargs):
Since the CSV headers match the model fields,
you only need to provide the file's path (or a Python file object)
insert_count = Person.objects.from_csv('/path/to/my/import.csv')
print "{} records inserted".format(insert_count)

Run your loader.

$ python manage.py myimportcommand

3.2 How to export data

from myapp.models import Person
from django.core.management.base import BaseCommand

class Command(BaseCommand):

def handle(self, *args, **kwargs):
All this method needs is the path to your CSV.
(If you don't provide one, the method will return the CSV as a string.)
Person.objects.to_csv('/path/to/my/export.csv')

Run your exporter and that’s it.

$ python manage.py myexportcommand

That’s it. You can even export your queryset after any filters or other tricks. This will work:

Person.objects.exclude(name='BEN').to_csv('/path/to/my/export.csv')

And so will something like this:

Person.objects.annotate(name_count=Count('name')).to_csv('/path/to/my/export.csv')

8 Chapter 3. An example

CHAPTER 4

Import options

The from_csv manager method has the following arguments and keywords options. Returns the number of records
added.

from_csv(csv_path_or_obj[, mapping=None, drop_constraints=True, drop_indexes=True, using=None,
delimiter=’, ’, null=None, force_not_null=None, force_null=None, encoding=None,
static_mapping=None])

Argument Description
csv_path_or_obj The path to the delimited data file, or a Python file object containing delimited data

9

django-postgres-copy Documentation, Release 0.0.5

Key-
word
Argu-
ment

Description

mapping A (optional) dictionary: keys are strings corresponding to the model field, and values correspond to
string field names for the CSV header. If not informed, the mapping is generated based on the CSV
file header.

drop_constraintsA boolean that indicates whether or not constraints on the table and fields and should be dropped prior
to loading, then restored afterward. Default is True. This is done to boost speed.

drop_indexesA boolean that indicates whether or not indexes on the table and fields and should be dropped prior to
loading, then restored afterward. Default is True. This is done to boost speed.

delimiterThe character that separates values in the data file. By default it is “,”. This must be a single one-byte
character.

quote_characterSpecifies the quoting character to be used when a data value is quoted. The default is double-quote.
This must be a single one-byte character.

null Specifies the string that represents a null value. The default is an unquoted empty string. This must be
a single one-byte character.

force_not_nullSpecifies which columns should ignore matches against the null string. Empty values in these columns
will remain zero-length strings rather than becoming nulls. The default is None. If passed, this must
be list of column names.

force_nullSpecifies which columns should register matches against the null string, even if it has been quoted. In
the default case where the null string is empty, this converts a quoted empty string into NULL. The
default is None. If passed, this must be list of column names.

encoding Specifies the character set encoding of the strings in the CSV data source. For example, 'latin-1',
'utf-8', and 'cp437' are all valid encoding parameters.

ignore_conflictsSpecify True to ignore unique constraint or exclusion constraint violation errors. The default is False.
using Sets the database to use when importing data. Default is None, which will use the 'default'

database.
static_mappingSet model attributes not in the CSV the same for every row in the database by providing a dictionary

with the name of the columns as keys and the static inputs as values.

4.1 Transforming data

By default, the COPY command cannot transform data on-the-fly as it is loaded into the database.

This library first loads the data into a temporary table before inserting all records into the model table. So it is possible
to use PostgreSQL’s built-in SQL methods to modify values during the insert.

As an example, imagine a CSV that includes a column of yes and no values that you wanted to store in the database
as 1 or 0 in an integer field.

NAME,VALUE
ben,yes
joe,no

A model to store the data as you’d prefer to might look like this.

from django.db import models
from postgres_copy import CopyManager

class Person(models.Model):
(continues on next page)

10 Chapter 4. Import options

django-postgres-copy Documentation, Release 0.0.5

(continued from previous page)

name = models.CharField(max_length=500)
value = models.IntegerField()
objects = CopyManager()

But if the CSV file was loaded directly into the database, you would receive a data type error when the ‘yes’ and ‘no’
strings were inserted into the integer field.

This library offers two ways you can transform that data during the insert.

4.1.1 Custom-field transformations

One approach is to create a custom Django field.

You can provide a SQL statement for how to transform the data during the insert into the model table. The transfor-
mation must include a string interpolation keyed to “name”, where the title of the database column will be slotted.

This example uses a CASE statement to transforms the data.

from django.db.models.fields import IntegerField

class MyIntegerField(IntegerField):
copy_template = """

CASE
WHEN "%(name)s" = 'yes' THEN 1
WHEN "%(name)s" = 'no' THEN 0

END
"""

Back in the models file the custom field can be substituted for the default.

from django.db import models
from postgres_copy import CopyManager
from myapp.fields import MyIntegerField

class Person(models.Model):
name = models.CharField(max_length=500)
value = MyIntegerField()
objects = CopyManager()

Run your loader and it should finish fine.

4.1.2 Model-method transformations

A second approach is to provide a SQL string for how to transform a field during the insert on the model itself. This
lets you specify different transformations for different fields of the same type.

You must name the method so that the field name is sandwiched between copy_ and _template. It must return a
SQL statement with a string interpolation keyed to “name”, where the name of the database column will be slotted.

For the example above, the model might be modified to look like this.

from django.db import models
from postgres_copy import CopyManager

(continues on next page)

4.1. Transforming data 11

http://www.postgresql.org/docs/9.4/static/plpgsql-control-structures.html

django-postgres-copy Documentation, Release 0.0.5

(continued from previous page)

class Person(models.Model):
name = models.CharField(max_length=500)
value = models.IntegerField()
objects = CopyManager()

def copy_value_template(self):
return """

CASE
WHEN "%(name)s" = 'yes' THEN 1
WHEN "%(name)s" = 'no' THEN 0

END
"""

And that’s it.

Here’s another example of a common issue, transforming the CSV’s date format to one PostgreSQL and Django will
understand.

def copy_mydatefield_template(self):
return """

CASE
WHEN "%(name)s" = '' THEN NULL
ELSE to_date("%(name)s", 'MM/DD/YYYY') /* The source CSV's date pattern

→˓can be set here. */
END

"""

It’s important to handle empty strings (by converting them to NULL) in this example. PostgreSQL will accept empty
strings, but Django won’t be able to ingest the field and you’ll get a strange “year out of range” error when you call
something like MyModel.objects.all().

4.2 Inserting static values

If your model has columns that are not in the CSV, you can set static values for what is inserted using the
static_mapping keyword argument. It will insert the provided values into every row in the database.

An example could be if you want to include the name of the source CSV file along with each row.

Your model might look like this:

from django.db import models
from postgres_copy import CopyManager

class Person(models.Model):
name = models.CharField(max_length=500)
number = models.IntegerField()
source_csv = models.CharField(max_length=500)
objects = CopyManager()

And your loader would look like this:

12 Chapter 4. Import options

django-postgres-copy Documentation, Release 0.0.5

from myapp.models import Person
from django.core.management.base import BaseCommand

class Command(BaseCommand):

def handle(self, *args, **kwargs):
Person.objects.from_csv(

'/path/to/my/data.csv',
dict(name='NAME', number='NUMBER'),
static_mapping = {

'source_csv': 'data.csv'
}

)

4.3 Extending with hooks

The from_csv method connects with a lower level CopyMapping class with optional hooks that run before and
after the COPY statement. They run first when the CSV is into a temporary table and then again before and after the
INSERT statement that then slots data into your model’s table.

If you have extra steps or more complicated logic you’d like to work into a loading routine, CopyMapping and its
hooks provide an opportunity to extend the base library.

To try them out, subclass CopyMapping and fill in as many of the optional hook methods below as you need.

from postgres_copy import CopyMapping

class HookedCopyMapping(CopyMapping):
def pre_copy(self, cursor):

print "pre_copy!"
Doing whatever you'd like here

def post_copy(self, cursor):
print "post_copy!"
And here

def pre_insert(self, cursor):
print "pre_insert!"
And here

def post_insert(self, cursor):
print "post_insert!"
And finally here

Now you can run that subclass directly rather than via a manager. The only differences are that model is the first
argument CopyMapping, which creates an object that is executed with a call to its save method.

from myapp.models import Person
from myapp.loaders import HookedCopyMapping
from django.core.management.base import BaseCommand

class Command(BaseCommand):
(continues on next page)

4.3. Extending with hooks 13

django-postgres-copy Documentation, Release 0.0.5

(continued from previous page)

def handle(self, *args, **kwargs):
Note that we're using HookedCopyMapping here
c = HookedCopyMapping(

Person,
'/path/to/my/data.csv',
dict(name='NAME', number='NUMBER'),

)
Then save it.
c.save()

14 Chapter 4. Import options

CHAPTER 5

Export options

The to_csv manager method only requires one argument, the path to where the CSV should be exported. It also
allows users to optionally limit or expand the fields written out by providing them as additional parameters. Other
options allow for configuration of the output file.

to_csv(csv_path[, *fields, delimiter=’, ’, header=True, null=None, encoding=None, escape=None,
quote=None, force_quote=None])

Argu-
ment

Description

csv_pathThe path to a file to write out the CSV. Also accepts file-like objects. Optional. If you don’t provide
one, the comma-delimited data is returned as a string.

fields Strings corresponding to the model fields to be exported. All fields on the model are exported by default.
Fields on related models can be included with Django’s double underscore notation. Optional.

delimiterString that will be used as a delimiter for the CSV file. Optional.
header Boolean determines if the header should be exported. Optional.
null String to populate exported null values with. Default is an empty string. Optional.
encodingThe character encoding that should be used for the file being written. Optional.
escape The escape character to be used. Optional.
quote The quote character to be used. Optional.
force_quoteForce fields to be quoted in the CSV. Default is None. A field name or list of field names can be

submitted. Pass in True or “*” to quote all fields. Optional.

5.1 Reducing the exported fields

You can reduce the number of fields exported by providing the ones you want as a list to the to_csv method.

Your model might look like this:

from django.db import models
from postgres_copy import CopyManager

(continues on next page)

15

django-postgres-copy Documentation, Release 0.0.5

(continued from previous page)

class Person(models.Model):
name = models.CharField(max_length=500)
number = models.IntegerField()
objects = CopyManager()

You could export only the name field by providing it as an extra parameter.

from myapp.models import Person
from django.core.management.base import BaseCommand

class Command(BaseCommand):

def handle(self, *args, **kwargs):
Person.objects.to_csv(

'/path/to/my/export.csv',
'name'

)

5.2 Increasing the exported fields

In cases where your model is connected to other tables with a foreign key, you can increase the number of fields
exported to included related tables using Django’s double underscore notation.

Your models might look like this:

from django.db import models
from postgres_copy import CopyManager

class Hometown(models.Model):
name = models.CharField(max_length=500)
objects = CopyManager()

class Person(models.Model):
name = models.CharField(max_length=500)
number = models.IntegerField()
hometown = models.ForeignKey(Hometown)
objects = CopyManager()

You can reach across to related tables during an export by adding their fields to the export method.

from myapp.models import Person
from django.core.management.base import BaseCommand

class Command(BaseCommand):

def handle(self, *args, **kwargs):
Person.objects.to_csv(

'/path/to/my/export.csv',
'name',

(continues on next page)

16 Chapter 5. Export options

django-postgres-copy Documentation, Release 0.0.5

(continued from previous page)

'number',
'hometown__name'

)

5.2. Increasing the exported fields 17

django-postgres-copy Documentation, Release 0.0.5

18 Chapter 5. Export options

CHAPTER 6

Open-source resources

• Code: github.com/california-civic-data-coalition/django-postgres-copy

• Issues: github.com/california-civic-data-coalition/django-postgres-copy/issues

• Packaging: pypi.python.org/pypi/django-postgres-copy

• Testing: travis-ci.org/california-civic-data-coalition/django-postgres-copy

• Coverage: coveralls.io/r/california-civic-data-coalition/django-postgres-copy

19

https://github.com/california-civic-data-coalition/django-postgres-copy
https://github.com/california-civic-data-coalition/django-postgres-copy/issues
https://pypi.python.org/pypi/django-postgres-copy
https://travis-ci.org/california-civic-data-coalition/django-postgres-copy
https://coveralls.io/r/california-civic-data-coalition/django-postgres-copy

django-postgres-copy Documentation, Release 0.0.5

20 Chapter 6. Open-source resources

Index

F
from_csv(), 9

T
to_csv(), 15

21

	Why and what for?
	Installation
	An example
	How to import data
	How to export data

	Import options
	Transforming data
	Inserting static values
	Extending with hooks

	Export options
	Reducing the exported fields
	Increasing the exported fields

	Open-source resources
	Index

